0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

Articles   |    
Alterations in Brain Structures Related to Taste Reward Circuitry in Ill and Recovered Anorexia Nervosa and in Bulimia Nervosa
Guido K. Frank, M.D.; Megan E. Shott, B.S.; Jennifer O. Hagman, M.D.; Vijay A. Mittal, Ph.D.
Am J Psychiatry 2013;170:1152-1160. doi:10.1176/appi.ajp.2013.12101294
View Author and Article Information

The authors report no financial relationships with commercial interests.

Supported by a Davis Foundation Award of the Klarman Family Foundation Grants Program in Eating Disorders and by NIMH grants K23 MH080135 and R01 MH096777.

From the Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus; and the Center for Neuroscience, Department of Psychology and Neuroscience, University of Colorado Boulder.

Address correspondence to Dr. Frank (guido.frank@ucdenver.edu).

Copyright © 2013 by the American Psychiatric Association

Received October 11, 2012; Revised December 14, 2012; January 28, 2013; Accepted January 31, 2013.

Abstract

Objective  The pathophysiology of anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. The authors assessed taste pleasantness and reward sensitivity in relation to brain structure, which may be related to food avoidance commonly seen in eating disorders.

Method  The authors used structural MR imaging to study gray and white matter volumes in women with current restricting-type anorexia nervosa (N=19), women recovered from restricting-type anorexia nervosa (N=24), women with bulimia nervosa (N=19), and healthy comparison women (N=24).

Results  All eating disorder groups exhibited increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manual tracing confirmed larger gyrus rectus volume, and volume predicted taste pleasantness ratings across all groups. Analyses also indicated other morphological differences between diagnostic categories. Antero-ventral insula gray matter volumes were increased on the right side in the anorexia nervosa and recovered anorexia nervosa groups and on the left side in the bulimia nervosa group relative to the healthy comparison group. Dorsal striatum volumes were reduced in the recovered anorexia nervosa and bulimia nervosa groups and predicted sensitivity to reward in all three eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas relative to the healthy comparison group. The results held when a range of covariates, such as age, depression, anxiety, and medications, were controlled for.

Conclusion  Brain structure in the medial orbitofrontal cortex, insula, and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value.

Abstract Teaser
Figures in this Article

Your Session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
 
Username
Password
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

FIGURE 1. Areas of Significant Group Differences Between Healthy Comparison and Eating Disorder Groupsa

a Eating disorder groups were anorexia nervosa, recovered anorexia nervosa, and bulimia nervosa. Green indicates gray matter differences and red indicates white matter differences.

FIGURE 2. Areas of Significant Gray Matter Differences Across Healthy Comparison and Eating Disorder Groupsa

a Eating disorder groups were anorexia nervosa, recovered anorexia nervosa, and bulimia nervosa.

FIGURE 3. Gyrus Rectus Gray Matter Volumes and Ratings of Sucrose Pleasantness in Healthy Comparison and Eating Disorder Groupsa

a In panel A, manually drawn gyrus rectus gray matter volumes indicate larger volume in the eating disorder groups relative to the healthy comparison group. In panel B, ratings of taste pleasantness correlated significantly with gyrus rectus volume across all groups (R2=0.044, p<0.029).

Anchor for Jump
TABLE 1.Demographic Variables in Women Ill With or Recovered From Anorexia Nervosa, Women With Bulimia Nervosa, and Healthy Comparison Women
Table Footer Note

aSSRI=selective serotonin reuptake inhibitor.

Table Footer Note

bSignificance is based on the Dunnett T3 post hoc test.

Table Footer Note

* p<0.05. **p<0.01. ***p<0.001.

Anchor for Jump
TABLE 2.Total Brain and Regional Brain Gray Matter and White Matter Volumes in Women Ill With or Recovered From Anorexia Nervosa, Women With Bulimia Nervosa, and Healthy Comparison Womena
Table Footer Note

a Whole-brain volumes are listed in cubic centimeters. Values for regional brain volumes are fractions of the respective brain tissue type per volume.

Table Footer Note

b Significance is based on the Dunnett T3 post hoc test.

Table Footer Note

* p<0.05. **p<0.01. ***p<0.001.

+

References

Kaye  WH;  Fudge  JL;  Paulus  M:  New insights into symptoms and neurocircuit function of anorexia nervosa.  Nat Rev Neurosci 2009; 10:573–584
[CrossRef] | [PubMed]
 
Fu  M;  Yu  X;  Lu  J;  Zuo  Y:  Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo.  Nature 2012; 483:92–95
[CrossRef] | [PubMed]
 
Van den Eynde  F;  Suda  M;  Broadbent  H;  Guillaume  S;  Van den Eynde  M;  Steiger  H;  Israel  M;  Berlim  M;  Giampietro  V;  Simmons  A;  Treasure  J;  Campbell  I;  Schmidt  U:  Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies.  Eur Eat Disord Rev 2012; 20:94–105
[CrossRef] | [PubMed]
 
Schäfer  A;  Vaitl  D;  Schienle  A:  Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.  Neuroimage 2010; 50:639–643
[CrossRef] | [PubMed]
 
Brooks  SJ;  Barker  GJ;  O’Daly  OG;  Brammer  M;  Williams  SC;  Benedict  C;  Schiöth  HB;  Treasure  J;  Campbell  IC:  Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study.  BMC Psychiatry 2011; 11:179
[CrossRef] | [PubMed]
 
Joos  A;  Klöppel  S;  Hartmann  A;  Glauche  V;  Tüscher  O;  Perlov  E;  Saum  B;  Freyer  T;  Zeeck  A;  Tebartz van Elst  L:  Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume.  Psychiatry Res 2010; 182:146–151
[CrossRef] | [PubMed]
 
Suchan  B;  Busch  M;  Schulte  D;  Grönemeyer  D;  Herpertz  S;  Vocks  S:  Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa.  Behav Brain Res 2010; 206:63–67
[CrossRef] | [PubMed]
 
Friederich  HC;  Walther  S;  Bendszus  M;  Biller  A;  Thomann  P;  Zeigermann  S;  Katus  T;  Brunner  R;  Zastrow  A;  Herzog  W:  Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients.  Neuroimage 2012; 59:1106–1113
[CrossRef] | [PubMed]
 
Roberto  CA;  Mayer  LE;  Brickman  AM;  Barnes  A;  Muraskin  J;  Yeung  LK;  Steffener  J;  Sy  M;  Hirsch  J;  Stern  Y;  Walsh  BT:  Brain tissue volume changes following weight gain in adults with anorexia nervosa.  Int J Eat Disord 2011; 44:406–411
[CrossRef] | [PubMed]
 
Wagner  A;  Greer  P;  Bailer  UF;  Frank  GK;  Henry  SE;  Putnam  K;  Meltzer  CC;  Ziolko  SK;  Hoge  J;  McConaha  C;  Kaye  WH:  Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa.  Biol Psychiatry 2006; 59:291–293
[CrossRef] | [PubMed]
 
Bosanac  P;  Kurlender  S;  Stojanovska  L;  Hallam  K;  Norman  T;  McGrath  C;  Burrows  G;  Wesnes  K;  Manktelow  T;  Olver  J:  Neuropsychological study of underweight and “weight-recovered” anorexia nervosa compared with bulimia nervosa and normal controls.  Int J Eat Disord 2007; 40:613–621
[CrossRef] | [PubMed]
 
Plassmann  H;  O’Doherty  JP;  Rangel  A:  Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making.  J Neurosci 2010; 30:10799–10808
[CrossRef] | [PubMed]
 
Uher  R;  Murphy  T;  Brammer  MJ;  Dalgleish  T;  Phillips  ML;  Ng  VW;  Andrew  CM;  Williams  SC;  Campbell  IC;  Treasure  J:  Medial prefrontal cortex activity associated with symptom provocation in eating disorders.  Am J Psychiatry 2004; 161:1238–1246
[CrossRef] | [PubMed]
 
Kringelbach  ML;  O’Doherty  J;  Rolls  ET;  Andrews  C:  Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness.  Cereb Cortex 2003; 13:1064–1071
[CrossRef] | [PubMed]
 
Gizewski  ER;  Rosenberger  C;  de Greiff  A;  Moll  A;  Senf  W;  Wanke  I;  Forsting  M;  Herpertz  S:  Influence of satiety and subjective valence rating on cerebral activation patterns in response to visual stimulation with high-calorie stimuli among restrictive anorectic and control women.  Neuropsychobiology 2010; 62:182–192
[CrossRef] | [PubMed]
 
Stein  D;  Gross-Isseroff  R;  Besserglick  R;  Ziv  A;  Mayer  G;  Yaroslavsky  A;  Toledano  A;  Voet  H;  Weizman  A;  Hermesh  H:  Olfactory function and alternation learning in eating disorders.  Eur Neuropsychopharmacol 2012; 22:615–624
[CrossRef] | [PubMed]
 
Frank  GK;  Reynolds  JR;  Shott  ME;  Jappe  L;  Yang  TT;  Tregellas  JR;  O’Reilly  RC:  Anorexia nervosa and obesity are associated with opposite brain reward response.  Neuropsychopharmacology 2012; 37:2031–2046
[CrossRef] | [PubMed]
 
Frank  GK;  Reynolds  JR;  Shott  ME;  O’Reilly  RC:  Altered temporal difference learning in bulimia nervosa.  Biol Psychiatry 2011; 70:728–735
[CrossRef] | [PubMed]
 
Klein  A;  Andersson  J;  Ardekani  BA;  Ashburner  J;  Avants  B;  Chiang  MC;  Christensen  GE;  Collins  DL;  Gee  J;  Hellier  P;  Song  JH;  Jenkinson  M;  Lepage  C;  Rueckert  D;  Thompson  P;  Vercauteren  T;  Woods  RP;  Mann  JJ;  Parsey  RV:  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.  Neuroimage 2009; 46:786–802
[CrossRef] | [PubMed]
 
Eggert  LD;  Sommer  J;  Jansen  A;  Kircher  T;  Konrad  C:  Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain.  PLoS ONE 2012; 7:e45081
[CrossRef] | [PubMed]
 
Spitzer  RL;  Williams  JBW;  Gibbon  M;  First  MB:  Structured Clinical Interview for DSM-IV (SCID) .  New York,  New York State Psychiatric Institute, Biometrics Research, 1995
 
Ramos  A;  Chaddad-Neto  F;  Joaquim  AF;  Campos-Filho  JM;  Mattos  JP;  Ribas  GC;  de Oliveira  E:  The microsurgical anatomy of the gyrus rectus area and its neurosurgical implications.  Arq Neuropsiquiatr 2009; 67:90–95
[CrossRef] | [PubMed]
 
Blasel  S;  Pilatus  U;  Magerkurth  J;  von Stauffenberg  M;  Vronski  D;  Mueller  M;  Woeckel  L;  Hattingen  E:  Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy.  Neuroradiology 2012; 54:753–764
[CrossRef] | [PubMed]
 
Wallis  JD:  Cross-species studies of orbitofrontal cortex and value-based decision-making.  Nat Neurosci 2012; 15:13–19
[CrossRef]
 
Morecraft  RJ;  Geula  C;  Mesulam  MM:  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey.  J Comp Neurol 1992; 323:341–358
[CrossRef] | [PubMed]
 
Rolls  ET:  Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite, and emotion.  Acta Physiol Hung 2008; 95:131–164
[CrossRef] | [PubMed]
 
Shaw  P;  Kabani  NJ;  Lerch  JP;  Eckstrand  K;  Lenroot  R;  Gogtay  N;  Greenstein  D;  Clasen  L;  Evans  A;  Rapoport  JL;  Giedd  JN;  Wise  SP:  Neurodevelopmental trajectories of the human cerebral cortex.  J Neurosci 2008; 28:3586–3594
[CrossRef] | [PubMed]
 
Fudge  JL;  Breitbart  MA;  Danish  M;  Pannoni  V:  Insular and gustatory inputs to the caudal ventral striatum in primates.  J Comp Neurol 2005; 490:101–118
[CrossRef] | [PubMed]
 
Morgan  MA;  LeDoux  JE:  Contribution of ventrolateral prefrontal cortex to the acquisition and extinction of conditioned fear in rats.  Neurobiol Learn Mem 1999; 72:244–251
[CrossRef] | [PubMed]
 
Phillips  ML;  Drevets  WC;  Rauch  SL;  Lane  R:  Neurobiology of emotion perception, II: implications for major psychiatric disorders.  Biol Psychiatry 2003; 54:515–528
[CrossRef] | [PubMed]
 
Devue  C;  Collette  F;  Balteau  E;  Degueldre  C;  Luxen  A;  Maquet  P;  Brédart  S:  Here I am: the cortical correlates of visual self-recognition.  Brain Res 2007; 1143:169–182
[CrossRef] | [PubMed]
 
Critchley  HD;  Wiens  S;  Rotshtein  P;  Ohman  A;  Dolan  RJ:  Neural systems supporting interoceptive awareness.  Nat Neurosci 2004; 7:189–195
[CrossRef] | [PubMed]
 
Konstantakopoulos  G;  Varsou  E;  Dikeos  D;  Ioannidi  N;  Gonidakis  F;  Papadimitriou  G;  Oulis  P:  Delusionality of body image beliefs in eating disorders.  Psychiatry Res 2012; 200:482–488
[CrossRef] | [PubMed]
 
Craig  AD:  How do you feel—now? The anterior insula and human awareness.  Nat Rev Neurosci 2009; 10:59–70
[CrossRef] | [PubMed]
 
Wang  GJ;  Tomasi  D;  Backus  W;  Wang  R;  Telang  F;  Geliebter  A;  Korner  J;  Bauman  A;  Fowler  JS;  Thanos  PK;  Volkow  ND:  Gastric distention activates satiety circuitry in the human brain.  Neuroimage 2008; 39:1824–1831
[CrossRef] | [PubMed]
 
O’Doherty  J;  Dayan  P;  Schultz  J;  Deichmann  R;  Friston  K;  Dolan  RJ:  Dissociable roles of ventral and dorsal striatum in instrumental conditioning.  Science 2004; 304:452–454
[CrossRef] | [PubMed]
 
Delgado  MR;  Locke  HM;  Stenger  VA;  Fiez  JA:  Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations.  Cogn Affect Behav Neurosci 2003; 3:27–38
[CrossRef] | [PubMed]
 
Balleine  BW;  Delgado  MR;  Hikosaka  O:  The role of the dorsal striatum in reward and decision-making.  J Neurosci 2007; 27:8161–8165
[CrossRef] | [PubMed]
 
Eagle  DM;  Wong  JC;  Allan  ME;  Mar  AC;  Theobald  DE;  Robbins  TW:  Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats.  J Neurosci 2011; 31:7349–7356
[CrossRef] | [PubMed]
 
Kucyi  A;  Moayedi  M;  Weissman-Fogel  I;  Hodaie  M;  Davis  KD:  Hemispheric asymmetry in white matter connectivity of the temporoparietal junction with the insula and prefrontal cortex.  PLoS ONE 2012; 7:e35589
[CrossRef] | [PubMed]
 
References Container
+
+

Self-Assessment Quiz

Did you know? You can add a subscription now to earn CME Credits!

1.
Localized orbitofrontal gray matter volumes were larger in all eating disorder groups; how did volume measures relate to behavior?
2.
How did volume of the insula, involved in taste processing and body perception, differentiate the study groups?
3.
How could insula volume drive pathologic behaviors in eating disorders?
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Web of Science® Times Cited: 4

Related Content
See Also...
Articles
Books
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 50.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 51.  >
The American Psychiatric Publishing Textbook of Geriatric Psychiatry, 4th Edition > Chapter 4.  >
The American Psychiatric Publishing Textbook of Substance Abuse Treatment, 4th Edition > Chapter 17.  >
The American Psychiatric Publishing Textbook of Substance Abuse Treatment, 4th Edition > Chapter 17.  >
Topic Collections
Psychiatric News
APA Guidelines
PubMed Articles